- A. Ferrara, L. Espín-Noboa, F. Karimi, C. Wagner. Link recommendations: Their impact on network structure and minorities. In 14th ACM Web Science Conference 2022 (WebSci ’22), June 26–29, 2022, Barcelona, Spain. https://doi.org/10.1145/3501247.3531583.
- C. Mougan, G. Kanellos, J. Micheler, J. Martinez, T. Gottron. Introducing explainable supervised machine learning into interactive feedback loops for statistical production system. IFC workshop on “Data science in central banking – data, technologies and applications” 2021.
- P. Naumann, E. Ntoutsi, Consequence-aware Sequential Counterfactual Generation, ECMLPKDD 2021.
- C. Yi, A. Zimek, E. Ntoutsi, XPROAX-Local explanations for text classification with progressive neighborhood approximation, DSAA 2021.
- C. Mougan, G. Kanellos, T. Gottron (2021). Desiderata for Explainable AI in statistical production systems of the European Central Ban. ECML-PKDD 2021 Workshop on BIAS.
- P. Delobelle, K. M. Scott, S. M. Wang, M. Miceli, D. Hartmann, T. Yang, E. Murasso, & B. Berendt (2021). Time to Question if We Should: Data-Driven and Algorithmic Tools in Public Employment Services. FEAST International Workshop on Fair, Effective And Sustainable Talent Management Using Data Science ECML-PKDD 2021 Workshop, 8.
- S. Fabbrizzi, S. Papadopoulos, E. Ntoutsi, I. Kompatsiaris (2021). A Survey on Bias in Visual Datasets.
- J. Finocchiaro, R. Maio, F. Monachou, G. K Patro, M. Raghavan, A. Stoica, S. Tsirtsis (2021). Bridging Machine Learning and Mechanism Design towards Algorithmic Fairness, ACM FAccT.
- C. Mougan, D. Masip, J. Nin, O. Pujol (2021): Quantile Encoder: Tackling High Cardinality Categorical Features in Regression Problems, arxiv
- K. Scott, P. Delobelle, B. Berendt (2021). Measuring Shifts in Attitudes Towards COVID-19 Measures in Belgium Using Multilingual BERT, arxiv
- O. Lampridis, R. Guidotti, S. Ruggieri. Explaining Sentiment Classification with Synthetic Exemplars and Counter-Exemplars. Discovery Science (DS 2020). 357-373. Vol. 12323 of LNCS, Springer, September 2020. Honorable mention at DS 2020. (Best Paper Award)
- T. Calders, E. Ntoutsi, M. Pechenizkiy, B. Rosenhahn, S. Ruggieri. Introduction to The Special Section on Bias and Fairness in AI. ACM SIGKDD Explorations Newsletter. Vol. 23 Issue 1, June 2021, 1-3.
- L. State: Logic Programming for XAI: A Technical Perspective. ICLP Workshops 2021. CEUR Workshop Proceedings vol. 2970.
- E. Ntoutsi, P. Fafalios, U. Gadiraju, V. Iosifidis, W. Nejdl, M. E. Vidal, … & I. Kompatsiaris (2020). Bias in data‐driven artificial intelligence systems—An introductory survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery.
- E. Krasanakis, S. Papadopoulos, I. Kompatsiaris (2020). Applying Fairness Constraints on Graph Node Ranks under Personalization Bias, COMPLEX NETWORKS