Skip to content

Artificial Intelligence without Bias

NoBIAS
NoBIASNoBIAS
  • About
  • Beneficiaries
    • LUH-L3S
    • LUH-IRI
    • GESIS
    • SCHUFA
    • CERTH
    • UNIPI
    • OU
    • SOTON-ECS
    • SOTON-LS
    • KULEUVEN
    • UNI-KLU
  • ESRs
  • Events
  • Research agenda
  • PhD Projects
  • Publications
  • Resources
  • Contact
  • Twitter
  • About
  • Beneficiaries
    • LUH-L3S
    • LUH-IRI
    • GESIS
    • SCHUFA
    • CERTH
    • UNIPI
    • OU
    • SOTON-ECS
    • SOTON-LS
    • KULEUVEN
    • UNI-KLU
  • ESRs
  • Events
  • Research agenda
  • PhD Projects
  • Publications
  • Resources
  • Contact
  • Twitter

Publications

  • M. Fahimi, M. Russo, K. M. Scott, M. Vidal, B. Berendt, K. Kinder-Kurlanda. Articulation Work and Tinkering for Fairness in Machine Learning. The 27th ACM Conference on Computer-Supported Cooperative Work and Social Computing. 2024.
  • J. M. Alvarez, A. B. Colmenarejo, A. Elobaid, S. Fabbrizzi, M. Fahimi, A. Ferrara, S. Ghodsi, C. Mougan, I. Papageorgiou, P. Reyero, M. Russo, K. M. Scott, L. State, X. Zhao & S. Ruggieri. Policy advice and best practices on bias and fairness in AI. Ethics and Information Technology. Springer 2024.
  • A. Ferrara, F. Bonchi, F, Fabbri, F. Karimi, C. Wagner. Bias-aware ranking from pairwise comparisons. Data Mining and Knowledge Discovery Journal, Springer. 2024.
  • A. Elobaid, N. Ramoly, L. Younes, S. Papadopoulos, E. Ntoutsi, I. Kompatsiaris. Sum of Group Error Differences: A Critical Examination of Bias Evaluation in Biometric Verification and a Dual-Metric Measure. The 1st International Workshop on Responsible Face Image Processing at IEEE FG24.
  • S. Ghodsi, S. A. Seyedi, E. Ntoutsi. Towards Cohesion-Fairness Harmony: Contrastive Regularization in Individual Fair Graph Clustering. PAKDD 2024.
  • J. M. Alvarez, A. B. Colmenarejo, A. Elobaid, S. Fabbrizzi, M. Fahimi, A. Ferrara, S. Ghodsi, C. Mougan, I. Papageorgiou, P. Reyero, M. Russo, K. M. Scott, L. State, X. Zhao, S. Ruggieri. Policy advice and best practices on bias and fairness in AI. Ethics and Information Technology. Springer Journals. 2024.
  • X. Zhao, K. Broelemann, S. Ruggieri, G. Kasneci. Causal Fairness-Guided Dataset Reweighting using Neural Networks. 2023 IEEE International Conference on Big Data in Sorrento, Italy.
  • C. Mougan, R. Plant, C. Teng, M. Bazzi, A. Cabrejas-Egea, R. S. Chan, D. S. Jasin, M. Stoffel, K. J. Whitaker, J. Manser. How to Data in Datathons. NeurIPS 2023 Track on Datasets and Benchmark.
  • S. Fabbrizzi, X. Zhao, E. Krasanakis, S. Papadopoulos, E. Ntoutsi. Studying bias in visual features through the lens of optimal transport. ECML PKDD 2023.
  • L. State, S. Ruggieri and F. Turini. Declarative Reasoning on Explanations Using Constraint Logic Programming. European Conference on Logics in Artificial Intelligence (JELIA ’23).
  • A. G. Yasar, A. Chong, E. Dong, T. K. Gilbert, S. Hladikova, R. Maio, C. Mougan, X. Shen, S. Singh, A. Stoica, S. Thais, M. Zilka. AI and the EU Digital Markets Act: Addressing the Risks of Bigness in Generative AI. GenLaw ’23.
  • L. State, S. Ruggieri, F. Turini. Reason to explain: Interactive contrastive explanations (REASONX). In the 1st World Conference on eXplainable Artificial Intelligence (xAI 2023).
  • J. M. Alvarez, S. Ruggieri. Counterfactual Situation Testing: Uncovering Discrimination under Fairness given the Difference. The ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO) 2023.
  • S. Ghodsi, E. Ntoutsi. Affinity Clustering Framework for Data Debiasing Using Pairwise Distribution Discrepancy. European Workshop on Algorithmic Fairness (EWAF’23).
  • L. State, A. B. Colmenarejo, A. Beretta, S. Ruggieri, F. Turini, S. Law. The Explanation Dialogues: Understanding how Legal Experts Reason About XAI Methods. European Workshop on Algorithmic Fairness (EWAF’23).
  • L. State, M. Fahimi. Careful Explanations: A Feminist Perspective on XAI. European Workshop on Algorithmic Fairness (EWAF’23).
  • J. M. Alvarez, K. M. Scott, S. Ruggieri, B. Berendt. Domain Adaptive Decision Trees: Implications for Accuracy and Fairness. In 2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’23).
  • C. Mougan, J. M. Alvarez, S. Ruggieri, S. Staab. Fairness Implications of Encoding Protected Categorical Attributes. The 6th AAAI/ACM Conference on AI, Ethics, and Society (AIES’23).
  • F. Castillo-Eslava, C. Mougan, A. Romero-Eche, S. Staab. The Role of Large Language Models in the Recognition of Territorial Sovereignty: An Analysis of the Construction of Legitimacy. The European Workshop on Algorithmic Fairness (EWAF’22).
  • C. Mougan, L. State, A. Ferrara, S. Ruggieri, S. Staab. Demographic Parity Inspector: Fairness Audits via the Explanation Space. The European Workshop on Algorithmic Fairness (EWAF’22).
  • C. Mougan, D. S. Nielsen. Monitoring Model Deterioration with Explainable Uncertainty Estimation via Non-parametric Bootstrap. The 37th AAAI Conference on Artificial Intelligence (AAAI 2023).
  • S. Ruggieri, J. M. Alvarez, A. Pugnana, L. State, F. Turini. Can We Trust Fair-AI?  Senior Member Presentation Track, The 37th AAAI Conference on Artificial Intelligence (AAAI 2023).
  • I. Papageorgiou. Συστήματα Τεχνητής Νοημοσύνης και διακριτική μεταχείριση κατά το προσυμβατικό στάδιο σύναψης της σύμβασης εργασίας (eng. Artificial Intelligence (AI)-based systems and discrimination in recruitment). Efarmoges Astikou Dikaiou kai Politikis Dikonomias, Nomiki Bibliothiki Issue 10, October 2022. Greece.
  • J. M. Alvarez, M. Russo. Perception as a Fairness Parameter. NeurIPS workshop on Algorithmic Fairness through the Lens of Causality and Privacy (AFCP2022).
  • L. State, H. Salat, S. Rubrichi, Z. Smoreda. Explainability in Practice: Estimating Electrification Rates from Mobile Phone Data in Senegal. 2022 Trustworthy and Socially Responsible Machine Learning (TSRML 2022) co-located with Neural Information Processing Systems (NeurIPS) 2022
  • C. Mougan, K. Broelemann, G. Kasneci, T. Tiropanis, S. Staab. Explanation Shift: Detecting distribution shifts on tabular data via the explanation space. NeurIPS’22 workshop on Distribution Shift.
  • P. R. Lobo, E. Daga, H. Alani, M. Fernandez. Semantic Web technologies and bias in artificial intelligence: A systematic literature review. Semantic Web Journal, 2022.
  • L. State. Constructing Meaningful Explanations: Logic-based Approaches. Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society (AIES’22). https://dl.acm.org/doi/10.1145/3514094.3539544
  • P. R. Lobo. Bias in Hate Speech and Toxicity Detection. Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society (AIES’22). https://dl.acm.org/doi/pdf/10.1145/3514094.3539519
  • K. M. Scott, S. M. Wang, M. Miceli, P. Delobelle, K. Sztandar-Sztanderska, B. Berendt. 2022. Algorithmic Tools in Public Employment Services: Towards a Jobseeker-Centric Perspective. In 2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’22), June 21–24, 2022, Seoul, Republic of Korea. ACM, New York, NY, USA. https://doi.org/10.1145/3531146.3534631
  • O. Lampridis, L. State,·R. Guidotti, S. Ruggieri. Explaining short text classification with diverse synthetic exemplars and counter‑exemplars. Springer Maching Learning (2022). https://doi.org/10.1007/s10994-022-06150-7
  • A. Ferrara, L. Espín-Noboa, F. Karimi, C. Wagner. Link recommendations: Their impact on network structure and minorities. In 14th ACM Web Science Conference 2022 (WebSci ’22), June 26–29, 2022, Barcelona, Spain. https://doi.org/10.1145/3501247.3531583.
  • C. Mougan, G. Kanellos, J. Micheler, J. Martinez, T. Gottron. Introducing explainable supervised machine learning into interactive feedback loops for statistical production system. IFC workshop on “Data science in central banking – data, technologies and applications” 2021.
  • P. Naumann, E. Ntoutsi, Consequence-aware Sequential Counterfactual Generation, ECMLPKDD 2021.
  • C. Yi, A. Zimek, E. Ntoutsi, XPROAX-Local explanations for text classification with progressive neighborhood approximation, DSAA 2021.
  • C. Mougan, G. Kanellos, T. Gottron (2021). Desiderata for Explainable AI in statistical production systems of the European Central Ban. ECML-PKDD 2021 Workshop on BIAS.
  • P. Delobelle, K. M. Scott, S. M. Wang, M. Miceli, D. Hartmann, T. Yang, E. Murasso, & B. Berendt (2021). Time to Question if We Should: Data-Driven and Algorithmic Tools in Public Employment Services. FEAST International Workshop on Fair, Effective And Sustainable Talent Management Using Data Science ECML-PKDD 2021 Workshop, 8.
  • S. Fabbrizzi, S. Papadopoulos, E. Ntoutsi, I. Kompatsiaris (2021). A Survey on Bias in Visual Datasets.
  • C. Mougan, D. Masip, J. Nin, O. Pujol (2021): Quantile Encoder: Tackling High Cardinality Categorical Features in Regression Problems, arxiv
  • K. Scott, P. Delobelle, B. Berendt (2021). Measuring Shifts in Attitudes Towards COVID-19 Measures in Belgium Using Multilingual BERT, arxiv
  • O. Lampridis, R. Guidotti, S. Ruggieri. Explaining Sentiment Classification with Synthetic Exemplars and Counter-Exemplars. Discovery Science (DS 2020). 357-373. Vol. 12323 of LNCS, Springer, September 2020. Honorable mention at DS 2020. (Best Paper Award)
  • T. Calders, E. Ntoutsi, M. Pechenizkiy, B. Rosenhahn, S. Ruggieri. Introduction to The Special Section on Bias and Fairness in AI. ACM SIGKDD Explorations Newsletter. Vol. 23 Issue 1, June 2021, 1-3.
  • L. State: Logic Programming for XAI: A Technical Perspective. ICLP Workshops 2021. CEUR Workshop Proceedings vol. 2970.
  • E. Ntoutsi, P. Fafalios, U. Gadiraju, V. Iosifidis, W. Nejdl, M. E. Vidal, … & I. Kompatsiaris (2020). Bias in data‐driven artificial intelligence systems—An introductory survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery.
  • E. Krasanakis, S. Papadopoulos, I. Kompatsiaris (2020). Applying Fairness Constraints on Graph Node Ranks under Personalization Bias, COMPLEX NETWORKS
Beneficiaries

Gottfried Wilhelm Leibniz Universität Hannover
GESIS
Schufa Holding AG
Centre for Research and Technology Hellas
University of Pisa
Open University
University of Southampton
KU Leuven
University of Klagenfurt

Partners

AstraZeneca
Expert System Iberia S.L.U.
Generali Italia S.p.A.
Media Gamma Limited
Ntent
Orange Labs Research
Research Institute AG & Co. KG
Vodafone Group PLC
NORD/LB
LSTECH ESPANA
University of Stuttgart
Freie Universität Berlin

Funding

The project is funded by European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 860630.

Project coordinator

Prof. Dr. Wolfgang Nejdl

Leibniz University Hannover & L3S Research Center

nejdl@l3s.de

Project manager

Mr. Gourab K Patro

Leibniz University Hannover & L3S Research Center

patro@l3s.de

© 2025 NoBIAS

Privacy Policy, Imprint

Go to Top
We are using cookies to ensure that you have the best experience on this website, in accordance with our Privacy & Cookie Policy. Read MoreACCEPT
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.